澳门新蒲京官网网址聚烯烃弹性体对通用塑料的改性

by admin on 2020年2月5日

(1.华南理工大学化学系,广东广州510641;广东工业大学材料系,广东广州510090;。华南理工大学高分子系,广东广州510641)性再生。结果表明,加入3份再生剂D-link可使废P1VGRT复合材料的冲击强度和拉伸强度有很大的提高;复合材料的冲击断面扫描电镜分析显示,经再生剂改性后复合材料的分散相尺寸明显减小,相容性显着提高。

POE弹性体对通用塑料的改性主要是研究其作为增韧剂改性刚性通用塑料,提高刚性通用塑料的韧性或通过共混提高通用聚乙烯的性能。国内外对PE/POE体系研究较少,越来越多的研究是关于POE增韧刚性PP的报道。

聚合物改性的最简单的方法是无机粒子的填充改性。按尺寸大小,无机粒子可分为微米粒子、纳米粒子和晶须粒子三类。无机粒子的填充改性方法不仅能提高聚合物的刚度、硬度、模量、冲击韧性和热变形温度,还能降低成本。由于聚合物复合材料的强度和韧性主要受填料粒子的粒径、形状、以及基体与粒子间的界面粘结强度的影响,因此采用界面增韧剂或弹性体等与无机刚性粒子共同增强增韧PP,能有效提高材料韧性,同时使材料也具有较高的强度,最终实现PP增强与增韧。由此通过将无机粒子的超细化、纳米化和表面功能化,使填料转变为功能填料,与弹性体协同增加聚合物的强度与韧性已成为聚合物/无机填料复合材料的研究热点[8]。

基金项目:广东省自然科学基金资助项目学系助教,硕士,主要从事高分子材料方面的教学与科研工在橡胶增韧pp的复合材料体系中,橡胶的交联程度是影响橡胶增韧塑料冲击强度的一个重要因素。交联程度过大,橡胶相模量过高,会使其失去橡胶的特性,难于发挥增韧作用;交联程度过低,加工时在受剪切作用的条件下橡胶颗粒容易变形破碎,不利于提高橡胶相的增韧效能f1.本研究所采用的胶粉是由废轮胎破碎而成,故存在交联程度过高的问题。一般橡胶再生剂的主要再生作用是在再生过程中能够分离出游离基,一方面可加快热氧化速度,另一方面能够稳定硫化胶大分子结构裂解出的游离基,起到游离基接受体的作甩从而加快了硫化胶结构的裂解速度。使用再生剂改性,不仅用量小、效果显着,而且设备简单、操作方便。

1、PE/POE体系

1、微米粒子改性聚合物

再生剂Delink为片状母炼胶,利用物理及化学方法可使全硫化橡胶经过机械的剪切作用而还原至未硫化状态,其所含的化学成分可在短时间内解开S―S键,而不破坏S―C和C一C键,使橡胶具有塑料般的可逆回收过程,并且保持原橡胶极高的物理性能。

近年来,木塑复合材料因其成本低、性能好、质量轻、对加工设备的磨损小等优点受到普遍关注。但热塑性塑料在填充木粉后复合材料变脆,限制了木塑复合材料的应用和推广。

采用微米级无机刚性粒子改善PP的韧性,可在不降低其拉伸强度和刚性的同时,还能提高材料抗冲性能和热变形温度。郑德等[9]通过对稀土偶联剂(WOT)的研究发现,WOT不仅与无机刚性粒子之间有物理吸附作用,同时还发生化学作用,加强了无机粒子的增韧效果,进而使复合材料的断裂伸长率增加纯PP的2倍左右,缺口冲击强度达到纯PP的2倍。同时,无机刚性粒子复合填充PP比单一填料填充PP具有更高的弯曲强度和冲击强度。Leong等[10]使用云母(M)、碳酸钙复合填充PP,当PP/M/CaCO3质量分数达到70/15/15时,材料具有最高的冲击强度和弯曲强度。高翔等[11]通过两步法共混工艺制备了含核-壳结构特征的相包容粒子的PP/EPDM/凹凸棒土三元复合材料,与纯PP对比发现缺口冲击强度提高约5倍,屈服强度和杨氏模量分别提高25%和110%。说明无机刚性粒子加入橡胶中形成核-壳结构,核为刚性粒子,橡胶为壳,明显使PP复合材料的韧性得以提高。

再生剂De-link在我国主要用于废轮胎胶粉的再生、废NBR的再生以及NBR密封件胶毛的再生,且均取得了较好的效果。但将其用于废轮胎胶粉增韧废PP的共混体系中尚属首次。

采用废木粉填充高密度聚乙烯制备木塑复合材料,采用茂金属聚乙烯和POE对复合材料进行增韧,并综合评价了这两种增韧剂的增韧效果。在两者用量小于12份时,两者的增韧效果相差不大;但在用量大于12份以后,用POE增韧的复合材料的冲击强度和断裂伸长率增加十分迅速,而用mPE增韧时增加幅度比较平缓;POE的增韧效果明显优于mPE。研究HDPE与POE共混物的力学性能和热性能,热分析结果表明HDPE和POE有一定的相互作用;当POE含量≥5%时,材料在室温下超韧。

2、纳米粒子改性聚合物

表1再生剂Delink对废PP/GRT复合材料力学性能的影响项目废PP改性后的混比复合材料冲击强度八)°:拉伸强度/MPa的废PP/GRT复合材料的冲击强度为16
0k°m2,比废PP提高了近1.2倍,比不加改性剂的废PP/GRT简单共混体系提高了1.4倍;改性后复合材料的拉伸强度为15.9MPa比不加改性剂的废PP/GRT简单共混体系提高了31%
2再生剂Dt-ink对废PP/GRT复合材料断面形态的影响力学性能的测试分析表明,橡胶再生剂可降低橡胶的交联程度并改善其相容性,增强界面粘合性能,从而使GRT起到增韧废PP的作用。为进一步了解复合材料冲击断裂机理和增韧机理,对其冲击断面进行SEM观察,结果如~3所示。

POE改性PE制备的发泡材料具有良好的韧性、弹性和强度,可用于作粘合胶带。将30份含离子结构的PE和6.5份偶氮二甲酰胺加入到100份含30%的POE和70%的AffinityPL1845组成的混合物中,挤出成片材,辐射交联,在250℃下发泡,所得1mm厚的泡沫片材具有良好的韧性,横、纵方向的弯曲强度分别为30.2MPa和24.3MPa。

纳米材料与技术从20世纪90年代开始兴起,逐渐使无机填料粒子向纳米化和功能化方向发展。纳米粒子填充聚合物必须实现纳米粒子与聚合物在纳米尺度上的均匀分散,才能达到较好的增强、增韧效果。因此,采用纳米粒子改性聚合物,应当进行适当的表面处理,降低粒子的表面能,并增加塑化过程中粒子与基体之间的界面相互作用,提高机械剪切力,最终达到纳米粒子均匀分散的效果。

从可以看出,纯废PP冲击断面基本开裂成碎块状,呈典型的热塑性塑料脆性断裂形貌。

POE/PE复合材料可制成微孔薄膜,用于电容器的隔离层、尿布、卫生巾、包装膜的隔离层等。

由于纳米CaCO3粒子的长径比小,当质量分数5%时,能同时增加PP的强度和韧性,而且缺口冲击强度随纳米CaCO3用量增加而增加。章明秋等研究了不同表面改性碳酸钙纳米粒子对聚丙烯(PP)等温与非等温结晶动力学的影响,及其熔融行为和晶型。研究发现纳米碳酸钙具有明显的成核效应,并具有较强的诱导型结晶的能力,而且与粒子的表面处理密切相关。

从中可以看到不加改性剂的废PP/GRT简单共混冲击断面有明显的孔洞,孔洞周围没有应力受力痕迹,废PP断面较光滑。从以上特征推测:在裂纹形成时,胶粒没有起到稳定裂纹的作用,也没有通过自身的形变吸收冲击能的迹象,相反却易成为破坏的薄弱环节,使裂纹从界面逐步增长,最终发展成大裂纹,导致脆性断裂Ch换言之胶粉粒子与废粘WishingH复合材料冲击断面画照片

2、PP/POE体系

古菊等通过固相法,采用羟基不饱和脂肪酸,对硬脂酸改性的工业纳米碳酸钙CCR进行了表面改性制备了R-CCR,进而通过熔融共混法制备了聚丙烯(PP)/乙丙橡胶(EPDM)/纳米碳酸钙二元和三元复合材料。发现加入R-CCR后,PP复合材料的拉伸断面出现明显的大面积屈服变形和拉丝状结构,而且与PP/EPDM/CCR的冲击断面相比,PP/EPDM/R-CCR冲击断面处的空穴增加明显并细化,同时R-CCR在PP基体中分散均匀,且界面模糊,与基体的相容性明显优于CCR。力学性能测试结果表明在保持聚丙烯的模量和强度基本不变的前提下,R-CCR能大幅度改善了聚丙烯的韧性,同时保持加工性能不变,说明R-CCR对PP同时具有增韧和增强的效果,且R-CCR和EPDM对PP起到协同增韧的效果。

3结论加入3份再生剂De-link可使废PP/GRT复合材料的力学性能明显提高,这主要是由于再生剂使胶粉的交联度适当降低更易发挥其增韧作用。经Delink改性后的复合材料冲击强度比废PP提高了近1.2倍,比不加改性剂的废PP/GRT简单共混体系提高了1.4倍,拉伸强度提高了31%.
SEM分析显示经再生剂改性后复合材料的冲击断面中的分散相比简单共混体系明显减小,且基体出现屈服和拉丝现象。

众所周知,作为大宗的通用塑料品种,聚丙稀存在低温韧性差和缺口敏感性大的缺点,因此,为了改善PP性能上的不足,弹性体增韧改性一直被视为最有效的途径。虽然三元乙丙胶对PP有良好的增韧效果,但EPDM价格高,碎胶有一定困难,流动性也不太理想。POE的问世,使其在用于PP的增韧改性方面具有传统弹性体无法比拟的优势。POE增韧PP不仅可以克服EPDM增韧PP的不足,而且还赋予PP更高的韧性、高透明性、高性能/价格比等特点。研究指出,与EPDM增韧PP相比,无论是对于普通PP、共聚PP还是高流动性PP,POE的增韧效果都优于EPDM,而且弯曲模量及拉伸强度降低小。POE中的辛烯含量影响POE对PP的增韧效果,随着POE中辛烯含量的增加,POE的结晶度、熔点和密度均降低,柔顺性增加,对PP的增韧效果提高。

纳米SiO2粒径通常为20~60nm,由硅或有机硅的氯化物高温水解生成,其表面带有羟基的超细粉体,化学纯度高,分散性好。纳米SiO2的效应,如小尺寸效应与宏观量子隧道效应大幅度提高了聚合物材料的弹性、耐水性、耐磨性、光稳定性及表面糙度等性能。由此,对纳米SiO2/聚合物复合材料的研究与应用受到普遍关注。

商品化的POE本身呈颗粒状,可以直接加入到PP等其它材料中实行改性。因此POE比EPDM橡胶改性剂加工操作上更为简便,这样可大大降低生产成本。研究了PP/POE共混体系并与PP/EPDM共混体系进行了比较。结果表明,两种共混体系具有相似的结晶行为,其力学性能相似,但PP/POE共混物具有更低的转矩,加工性能较好。作为PP冲击改性剂,POE较EPDM具有明显的价格、性能优势。

周红军等利用反应性增容技术制备了纳米二氧化硅/聚丙烯复合材料,改性粒子上的环氧基与氨基化聚丙烯上的氨基之间发生化学反应,从而大大增强了复合材料的界面作用,即使在粒子含量很低时对聚丙烯的拉伸强度、模量和冲击强度的提高也较明显。容敏智与周红军研究了表面接枝改性纳米SiO2及增容剂对聚丙烯(PP)结晶过程、等温与非等温结晶动力学的影响,由于纳米SiO2的异相成核作用,使PP的结晶总速率增大,结晶峰温升高;表面处理有效地改善了粒子与基体的亲和性,提高了粒子的成核效应,增容剂马来酸酐接枝聚丙烯(PP-g-MAH)有利于纳米SiO2的成核活性的提高;添加纳米SiO2降低了复合材料结晶的有效能垒,PP-g-MAH增大了复合材料的结晶有效能垒,但不高于纯PP的结晶有效能垒。

研究PP/POE共混体系的相态结构、增韧机理以及共混体系的力学性能。研究结果表明在相同条件下,POE加入量比EPDM少,POE用量为20份时就可使共混合金实现脆韧转变。在PP/POE共混体系中,POE在PP连续相中形成均匀的“海-岛”结构;POE对PP增韧改性符合银纹剪切机理,可有效提高PP的常温、低温冲击强度。

吴唯等用自制的分散剂对纳米SiO2进行表面处理后,再利用双螺杆挤出机使聚丙烯、三元乙丙胶熔融共混,制备出PP/纳米SiO2/EPDM纳米复合材料,研究表明冲击强度达到最大值时,纳米SiO2掺量为2%~3%。主要是纳米SiO2有效提高PP的结晶温度与结晶速度的同时,还使球晶细化,致使纳米SiO2刚性微粒在PP连续相中成微粒团聚体形态,并与PP基体表现出较强的结合强度。构成微粒团聚体的平均微粒数约为6~7。

研究POE对等规聚丙烯的增韧作用。当POE质量分数在15%~25%之间,共混物冲击强度缓慢增加;继续增加POE质量分数,冲击强度迅速增加;当POE质量分数为40%时,冲击强度最大。形态结构分析表明,随着POE质量分数的增加,分散相尺寸增加;共混物组分的协同作用使冲击强度显著提高。

纳米TiO2粒子可作为高聚物的光屏蔽剂提高基体的抗光老化性,主要因为其特有的半导体结构,使其能够吸收并反射太阳光,而且纳米TiO2粒子在吸收太阳光后,会发生光催化化学反应,进而产生强氧化性的基团使矿物杂质氧化,因而纳米TiO2可作为抗菌剂使用。纳米TiO2的加入可提高PP结晶度,细化PP晶粒,同时均匀分散的纳米TiO2粒子能显著增加裂纹扩展阻力。季光明等用共混方法,制备了经钛酸酯偶联剂NDZ-201处理的PP/TiO2纳米复合材料,发现纳米TiO2的加入使复合材料的力学性能指标得到了明显提高,如抗弯强度、抗弯模量及冲击强度。但当其掺量超过5%时,力学性能增长趋势缓慢,并且随纳米TiO2粒子掺量继续增加,力学性能呈现下降趋势;在纳米TiO2加入量一定的情况下,NDZ-201质量分数为2%时,对PP的增强增韧效果最为显著。高俊刚等[22]研究了PP/TiO2纳米复合材料的流变行为和力学性能,发现纳米TiO2的增韧效果优于普通TiO2。纳米TiO2与PP形成的物理三维网络起到应力集中作用,导致粒子周围的PP发生大的塑性变形和银纹效应而提高冲击韧性。但纳米TiO2添加量超过4%时,粒子分散性不好,容易形成团聚,导致PP/TiO2纳米复合材料冲击强度大幅度下降。

3、通用塑料/POE/无机填料体系

如何减少增韧剂POE的用量来降低成本又不影响到增韧效果,这是通用塑料/POE体系研究开发的热点与方向。在共混物中添加无机或有机填料可使制品的原料成本降低达到增量的目的,或使制品的性能有明显的改善,近年来可见在通用塑料/POE共混体系中加入无机填料的报道。

针对回收高密度聚乙烯制得的管材环刚度不足的缺点,采用滑石粉和自制的改性POE对RHDPE进行了改性,研究了滑石粉和MPOE用量对共混体系力学性能的影响。

结果表明,当RHDPE/MPOE/滑石粉的质量配比为50/10/40时,体系的综合力学性能最好。当滑石粉用量为40%时,制得的RHDPE管材的环刚度比非改性RHDPE管材提高54%。同时他们还研究PVC/MPOE/无机填料体系的力学性能,结果表明:当填充母料中滑石粉或碳酸钙的质量分数为70%时,三元复合体系的综合性能最好。

国内外对PP/弹性体和PP/无机纳米粒子体系进行了研究,这两种体系所表现出的韧性的提高或刚性的增加都是以牺牲其他性能为代价的,因此,将弹性体的增韧和无机纳米粒子的增韧增强同时结合起来,生成一种PP/弹性体/无机纳米粒子的多相复合体系正逐渐成为研究的新热点。

采用合金化技术和填充复合工艺,制得高性能的PP/POE/纳米高岭土三元复合材料。研究结果表明,纳米高岭土和弹性体POE对PP增韧具有协同作用,呈现的并不是二者独立增韧作用的简单加和;纳米高岭土的最佳用量为5%,用扫描电子显微镜观察PP/POE/纳米高岭土的冲击断面,可以看到高岭土粒子被基体所包覆以层状结构分散于共混物基体中,界面结合牢固。

研究PP/POE/纳米SiO2复合材料后得出结论:熔融共混法使POE与SiO2均匀分散在PP基体中,当PP/POE/纳米SiO2比例为100/15/4时,复合材料的综合性能最佳。虽然纳米SiO2粒子在PP中的分散呈微粒团聚体分布,但与其本身的二次粒子粒径相当且小于临界粒径,因此在受到冲击时起到了吸收能量阻碍裂纹扩展的作用,从而提高了材料的韧性。

对PP/弹性体/纳米CaCO3复合材料进行了研究,发现材料冲击强度良好;选用POE比HDPE增韧效果好,材料拉伸强度随弹性体的含量增大而下降。透射电子显微镜观察显示,纳米CaCO3在PP基体中已达到纳米分散。研究得出纳米CaCO3改善了因POE使材料硬度降低所造成的不足,拉伸强度和弯曲强度都得以提高;活化纳米CaCO3的改性效果大大优于未活化的,用量为8份左右增强效果最佳;复合材料同时实现了增强和增韧。

PP/POE体系具有优异的综合性能,现已开发出多种产品,特别是汽车保险杠具有广阔的市场前景。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

网站地图xml地图